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Thermal shock resistance of cubic 8 mol% yttria-stabilized
zirconia (YSZ) can be increased by the addition of dilute

second phases. This study addresses how these dilute second

phases affect the thermal conductivity for two-phase ceramic

composites of 8 mol% YSZ with 10–20 vol% alumina (Al2O3)
or 10–20 vol% mullite (3Al2O3�2SiO2). Thermal conductivity

measurements from 310 K (37°C) to 475 K (202°C) were made

using the 3x method and compared with results from 3D ana-
lytical models and a 2D computational microstructure-based

model (Object-Oriented Finite Element Analysis, OOF2). The

linear Rule of Mixtures was the least accurate and significantly

overestimated the measured thermal conductivity at low tem-
peratures, with errors in some cases exceeding 100%. Calcula-

tions using the Bruggeman and OOF2 models were both much

better, and the deviation of less than �2.5% across all compo-

sitions and temperatures is within the range of experimental
and modeling uncertainty. The Maxwell Garnett equation was

a close third in accuracy (�8%). A sensitivity analysis for each

model quantifies how small perturbations in the thermal con-

ductivity of the dispersed second phase influence the effective
thermal conductivity of the composite, and reveals that the

linear Rule of Mixtures model is physically unrealistic and

oversensitive to the thermal conductivity of the dispersed phase.

I. Introduction

THE effect of second phases on sintering, mechanical
properties, and ionic conductivity of cubic 8 mol%

yttria-stabilized zirconia (8 mol% YSZ) has been of strong
interest1–4 as commercial applications for cubic 8 mol% YSZ
include solid oxide electrolytes for oxygen sensors and fuel
cells.5–8 Yet, although thermal shock is one of the most com-
mon operational failure modes for 8 mol% YSZ oxygen sen-
sors, relatively little work has been conducted on how second
phases in YSZ affect thermal shock. Thermal shock and fail-
ure occur during rapid cooling for temperature differences as
small as 100 K for single phase 6 mol% cubic YSZ9 and
150 K for single phase 8 mol% cubic YSZ.10

Dilute second phase additions of alumina in 8 mol% YSZ
can increase the thermal shock resistance.10 Dilute solutions
are those in which the second phase is below the percolation
limit. One effect of adding a second phase with a higher ther-
mal conductivity, such as alumina in YSZ,11 is an increase in
the effective thermal conductivity, with faster heat transfer
from the interior to the exterior during quenching. Faster
heat transfer reduces thermal gradients that cause residual

stress due to thermal expansion. These thermal stresses are
primarily responsible for crack propagation from preexisting
flaws during thermal shock. To understand how second
phases affect heat transport in 8 mol% YSZ in the tempera-
ture range where thermal shock occurs, an analysis of the
thermal conductivity and its dependence on the microstruc-
ture, amount of second phases, and distribution of the
second phase should be conducted, and is the focus of this
study.

Experimental characterization of the thermal conductivity
for ceramics and ceramic composites is usually performed
using the laser flash method over a range of temperatures,
typically 373–1273 K (100°C–1000°C).12 At temperatures
below approximately 473 K (200°C), alternative techniques
such as the 3x method can also be employed.13–15 As YSZ
has low electrical and thermal conductivity, it is a good
candidate for the 3x method, which requires only small tem-
perature fluctuations for sensitive measurements.

Microstructure-based finite element modeling can be
applied to approximate the thermal conductivity of compos-
ites and is especially useful because of its capability to
account for size, shape, and distribution of second phase
particles. Object-oriented finite element analysis version 2
(OOF2),16,17 open access software developed at the National
Institute of Standards and Technology (NIST), can be used
effectively for this purpose. OOF2 uses two-dimensional
scanning electron microscopy (SEM) microstructures as the
foundation for calculations, and has been applied to success-
fully characterize the thermal behavior with respect to poros-
ity in t′ 4 mol% YSZ thermal barrier coatings18 and Cu–SiC
composites,19 the latter with a honeycomb structure that
allows two-dimensional modeling to be an appropriate
approximation of three dimensions.

This study evaluates four theoretical methods (OOF2
simulations, Maxwell Garnett, Bruggeman, and linear Rule
of Mixtures approximation) used to predict the effective ther-
mal conductivity of composite materials. The analytical
models, Maxwell Garnett, Bruggeman, and linear Rule of
Mixtures only require knowledge of the three-dimensional
volume fraction of each phase and the respective thermal
conductivities, but do not take into consideration microstruc-
tural details. In contrast, although the OOF2 simulations are
fundamentally two dimensional, they benefit from using real
microstructural geometries of each phase when determining
the effective thermal conductivity.

The linear Rule of Mixtures is simple, but most appropri-
ately used when each phase is contiguous and aligned parallel
to the direction of heat flow.20 It is sometimes used for two-
phase systems, randomly dispersed with respect to the heat
flow, due to mathematical convenience for approximating the
effective thermal conductivity (keff) based on the volume frac-
tion of each phase. In the linear Rule of Mixtures [Eq. (1)],
k1 is the thermal conductivity of Phase 1, k2 is the thermal
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conductivity of Phase 2, and V1 and V2 are the respective
volume fractions of the two-phases.

keff ¼ k1V1 þ k2V2 (1)

The inverse Rule of Mixtures is appropriate when each phase
is contiguous and aligned perpendicular to the direction of
heat flow.20

1

keff
¼ V1

k1
þ V2

k2
(2)

When the second phase is a low volume fraction and ran-
domly dispersed, more appropriate equations are available
for calculating effective material properties of composites,
including the Maxwell Garnett and Bruggeman models.21–23

Maxwell Garnett assumes that the dispersed phase can be
represented as spheres far enough apart to have negligible
thermal interactions between particles.24 Bruggeman uses the
assumption that both the components are randomly dis-
persed with no assumed shape, and is most accurate when
one phase is below the percolation limit.25 Both these models
have been applied to determine the effective thermal conduc-
tivity in two-phase ceramic composites.26–33 (There are more
complex expressions that can be employed when the dis-
persed phase has a specific geometric shape such as platelets,
cylinders, etc., and when intergranular phases or delamina-
tion provides high interfacial resistance.34) In both models,
k1 and V1 are the thermal conductivity and volume fraction
of the continuous phase (8 mol% YSZ in this case), respec-
tively, and k2 and V2 are the thermal conductivity and
volume fraction of the dispersed phase, respectively. The
two-component Maxwell Garnett model used to calculate the
effective thermal conductivity of a two-phase composite is
given by Eq. (3):

keff ¼ k1
k2ð1þ 2V2Þ � k1ð2V2 � 2Þ
k1ð2þ V2Þ þ k2ð1� V2Þ

� �
(3)

The two-component, three-dimensional Bruggeman model
used to calculate effective thermal conductivity is given by
Eq. (4):

V1
k1 � keff
k1 þ 2keff

� �
þ V2

k2 � keff
k2 þ 2keff

� �
¼ 0 (4)

In this study, the thermal conductivity of 8 mol% YSZ
with alumina (Al2O3) or mullite (3Al2O3�2SiO2) second phase
additions is measured experimentally using the 3x method
for the temperature range for thermal shock of 8 mol%
YSZ. The computational finite element approach of OOF2
and the three equation-based analytical models are used to
approximate the effective thermal conductivity of two-phase
ceramic composites and compared with the experimental 3x
measurements. A sensitivity analysis is performed on all four
theoretical models to determine the effects of small perturba-
tions in the thermal conductivity of the second phase on the
effective thermal conductivity of the composites.

II. Experimental Procedures

(1) Sample Preparation and Characterization
Ceramic powders of 8 mol% YSZ powder (Tosoh Co. Ltd.,
Tokyo, Japan, crystallite size of 30 nm), high-purity a-alu-
mina powder (Baikowski Inter. Corp., Charlotte, NC, crys-
tallite size of 40 nm), or high-purity mullite powder (KCM
Corporation, Nagoya, Japan, crystallite size of 40 nm) were
attritor-milled then formed into cylinders by cold isostatic
pressing. Five compositions were made: (1) 8 mol% YSZ, (2)

8 mol% YSZ + 10 vol% alumina, (3) 8 mol% YSZ + 20 vol
% alumina, (4) 8 mol% YSZ + 10 vol% mullite, and (5)
8 mol% YSZ + 20 vol% mullite. All were sintered at
1823 K (1550°C) for 2 h. Density was measured by the
Archimedes method.

X-ray diffraction (XRD; Rigaku SmartLab X-ray Diffrac-
tometer, Tokyo, Japan) used Cu-ka radiation (wavelength
0.15406 nm) and scans from 20° to 90° in 0.05° steps. SEM
was performed using a Philips/FEI XL 30 FEG (FEI, Hills-
boro, OR). A thin film of iridium was deposited on the sur-
face (South Bay Technology IBS/e Ion Beam Sputter
Deposition System, San Clemente, CA) to prevent electrical
charging during SEM analysis. Grain sizes were determined
by ImageJ (National Institute of Health) with values for
grain diameters in two dimensions multiplied by 1.74, the
mathematical relationship between a regular polyhedron and
equiaxed grain diameter, to obtain a “true” three-dimen-
sional grain size.35

(2) 3x Method
Each sample was polished to a finish of 0.06 lm. A gold
heater line was patterned directly onto polished surfaces by
photolithography and a liftoff method with typical heater
dimensions 10 lm width, 250 nm thickness, and 0.5 mm
length between the inner voltage probes (Fig. 1). A 10 nm
layer of chromium was used to improve adhesion between
the gold and sample.

In the standard 3x method, the oscillating temperature
field varies over a length scale known as the “thermal wave-
length”, defined as k = √(D/2x), where D is the thermal diffu-
sivity and x is the angular frequency of the heating current.14

The approximate range of k in this study is estimated as
8.7 lm < k < 47 lm, based on the range of measurement fre-
quencies (890 Hz > x/2p > 30 Hz) and the diffusivity of con-
ventional YSZ (D � 8.4 9 10�7 m2/s).36 Since these k values
are much larger than the estimated phonon mean free paths
in these materials (well below 100 nm), the continuum treat-
ment of the standard 3x method is justified.37 Furthermore,
the large heater length ensures that the measurement is an
average over numerous grains.

To ensure the stability of the heater line’s electrical resis-
tance, the samples were annealed at 500 K (227°C) after micro-
fabrication and before measurements. Then 3x data were
collected from 310 K (37°C) to 475 K (202°C), waiting 30 min
between every temperature point to ensure thermal stability.
During the experiment, the 3x method also causes a small
steady-state temperature increase in the heater line above the
bulk sample temperature, with a typical value THeater � TBulk

Sample + 5 K. To reflect this, data are plotted at Tavg =
(THeater + TBulk Sample)/2 and error bars reflect this difference
between THeater and Tavg as well as the inherent temperature
uncertainty of typically 0.5%.

w=10 μmGold line
(250 nm thick) 

Sample

L=1 m
m

I1ω V3ω

Fig. 1. Schematic of a typical 3x measurement setup. Not to scale.
Typical sample thickness is 3 mm.
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(3) Object-Oriented Finite Element Analysis Version 2
Simulations
A thermal gradient model was produced using OOF2 for each
composition. Two-dimensional SEM images are converted to
two-color images to create finite element meshes adapted to the
microstructure of the material. Each phase is represented by a
single color value and assigned input values for thermal conduc-
tivity as a function of temperature from experimental results on
single-phase materials.38–40

A thermal gradient is simulated in the vertical direction of
the image by assigning the top boundary a fixed temperature
value and the bottom boundary a value 10 K higher, keeping
the other two sides adiabatic. The heat equation is solved by the
conjugate gradient method, resulting in an x and y heat flux
component assigned to each node of the mesh. OOF2 removes
the third dimension by setting the out-of-plane (z) heat flux
components to zero, analogous to plane stress analysis used in
fracture mechanics. The resulting 2D heat flux is integrated
across the top to determine the effective thermal conductivity:

keff ¼ LyQ

LxðTbottom � TtopÞ (5)

where keff is the effective thermal conductivity of the compos-
ite, Q (watts per meter of thickness in z) is the OOF2 heat
flux integrated across the top boundary, Ly and Lx are the
image dimensions, and Tbottom and Ttop are the temperature
values assigned to the bottom and top boundaries. By simu-
lating a thermal gradient across an image, keff is calculated at
various temperatures from 298 to 473 K (25°C–200°C).
Three representative SEM micrographs were used for each
composition to calculate the average effective thermal con-
ductivity. Typical variability between each simulation for the
same composition was less than 1%.

(4) Dimensionless Sensitivity Analysis
The dimensionless sensitivity parameter, Ski , is the fractional
change in keff when the thermal conductivity of a specific
phase (i = continuous or dispersed) is perturbed while the
other held constant. For example, if a 1% change in k2 leads
to a corresponding 1% change in keff, then the dimensionless
sensitivity parameter is Sk2 ¼ 1, meaning keff is fully sensitive
to k2. Likewise, if Sk2 ¼ 0:3, then a 1% change in k2 would
cause a 0.3% change in keff. Mathematically, the sensitivity
of keff to changes in the thermal conductivity of the dispersed
phase (k2) is as follows:

Sk2 ¼
k2
keff

okeff
ok2

����
k1

(6)

Likewise, by exchanging k2 for k1, the sensitivity of keff to
the continuous phase can also be determined. It is easily
shown that this sensitivity analysis follows a “sum rule”,
namely Sk2 þ Sk2 ¼ 1.

For the three analytical models described above, expres-
sions for Sk2 are derived and given as,

Sk2; Rule of Mixtures ¼ k2
keff

V2 (7)

Sk2; Maxwell Garnett ¼ k2V2

keff

3k1
k1ð2þ V2Þ þ k2ð1� V2Þ

� �2

(8)

Sk2; Bruggeman¼ k2
keff

k1þkeffð3V2�1Þ
4keffþk1ð3V2�2Þ�k2ð3V2�1Þ

� �
(9)

III. Results and Discussion

(1) Microstructure and Phase Characterization
Samples are 98%–99% dense (Table I), with the second
phase fairly homogeneously distributed throughout the 8 mol
% YSZ microstructure (Fig. 2). The second phase limits the
grain growth of 8 mol% YSZ due to grain-boundary pinning
and results in a reduction in grain size (Table I). Higher
amounts of the second phase are more effective in reducing
the grain size. The larger reduction in grain size in the
alumina composite compared with the mullite composite
(Fig. 2) could be due to differences in either powder particle
agglomeration or grain growth and transport rates of the
second phase. However, the final grain sizes are much larger
than nanoscale dimensions where the high density of grain
boundaries would significantly decrease thermal conductiv-
ity.41 XRD of all compositions shows no additional phase
formation during sintering (Fig. 3).

(2) Thermal Conductivity Measurements
The 3x thermal conductivity of most composites decreases
slightly as testing temperature is increased (Fig. 4). 20 vol%
alumina has the largest thermal conductivity compared with

Table I. Theoretical Density, Relative Density, and Average Grain Size of 8 mol% YSZ with and Without Second Phase
Additions of Alumina and Mullite

Theoretical density (g/cm3) Relative density (%) 8YSZ Grain size (lm) Al2O3 grain size (lm) Mullite grain size (lm)

8YSZ 6.0 98 9.2 � 3.5 – –
8YSZ + 10 vol% Al2O3 5.8 99 1.7 � 0.8 0.9 � 0.2 –
8YSZ + 20 vol% Al2O3 5.6 99 1.2 � 0.9 0.8 � 0.1 –
8YSZ + 10 vol% mullite 5.7 98 4.7 � 1.6 – 1.8 � 0.3
8YSZ + 20 vol% mullite 5.4 99 3.4 � 1.2 – 2.0 � 0.4

(b)(a)

(c) (d)
5μm

5μm

5μm

5μm

etillu
M

l
A

2O
3

10% 20%

Fig. 2. Scanning electron microscopy micrographs of 8 mol% YSZ
(light phase) and dispersed phase (dark phase, alumina, or mullite)
for (a) 10 vol% Al2O3; (b) 20 vol% Al2O3; (c) 10 vol% mullite; and
(d) 20 vol% mullite.
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single phase 8 mol% YSZ, followed by 10 vol% alumina,
20 vol% mullite, and 10 vol% mullite, with 10 vol% mullite
only slightly higher than single-phase 8 mol% YSZ (Fig. 4).
The large increase in thermal conductivity for alumina-
containing composites is due to the relatively high thermal
conductivity, kalumina, RT � 33 W/mK40 compared to 8 mol
% YSZ, k8 mol% YSZ, RT � 1.8–2.4 W/mK,42–44 while the
smaller increase in thermal conductivity in mullite composites
can be attributed to mullite having a much lower thermal
conductivity than alumina, kmullite, RT � 6 W/mK.38 The
thermal conductivity of single phase 8 mol% YSZ increases
slightly from room temperature to approximately 400 K
(127°C), where it plateaus, and agrees with published data
within 8% deviation.42,43 Interestingly, 10% mullite in 8 mol
% YSZ results in almost constant thermal conductivity over

the temperature range studied, as the decreasing mullite ther-
mal conductivity effectively counteracts the increasing 8 mol
% YSZ conductivity.

A representative OOF2-meshed microstructure of 8 mol%
YSZ + 20 vol% alumina is constructed using a combination
of triangular and rectangular finite elements, with a larger
density of elements located at the interface between two
phases (Fig. 5). Further refinement of the mesh did not
change the convergence of the solution.

To calculate the effective thermal conductivity for each
composite, the heat flux vector is calculated at each node. A
heat flux map is generated by taking the scalar magnitude of
this vector and illustrates how the second phase creates
preferred pathways for heat flow in the direction of the
applied temperature gradient, seen in the representative
microstructure with an overlaid heat flux map (Fig. 6).

Figures 7 and 8 compare measured thermal conductivity
values for 8 mol% YSZ with 10 and 20 vol% second phases
with the four theoretical methods (OOF2 simulations,
Maxwell Garnett model, Bruggeman model, and linear Rule
of Mixtures approximation). The linear Rule of Mixtures
exceeded 100% error in some cases, as this approximation
overemphasizes the higher thermal conductivity dispersed
phase. In these samples, this problem is worst at low temper-
atures because the contrast between k1 and k2 is greatest
there (both alumina and mullite have a strongly temperature-
dependent conductivity in this regime, scaling approximately
as T�1). Figure 9 shows how the linear Rule of Mixtures and
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Fig. 3. X-ray diffraction of samples (a) 8 mol% YSZ; (b) +10 vol%
Al2O3; (c) +20 vol% Al2O3; (d) +10 vol% mullite; and (e) +20 vol%
mullite.
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Fig. 5. OOF2 meshing for 8 mol% YSZ (white) + 20 vol% Al2O3
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in the zoomed in view.
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Fig. 6. Heat flux map of 20 vol% alumina corresponding to Fig. 5,
produced by OOF2 simulation. Thermal gradient is imposed from
bottom to top, keeping sides adiabatic.
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the inverse Rule of Mixtures serve as upper and lower
bounds for thermal conductivity.

The other three models are within �8% error or less for each
composite. Among these three models, for the 10 and 20 vol%
alumina composites the Maxwell Garnett calculations have the
worst agreement with the experimental values, �8% error for
20 vol% alumina and �5% error for 10 vol% alumina. OOF2
simulations are found to provide only �2% error compared
with experimental values for the 10 vol% alumina composite
[Fig 7(a)]. Both OOF2 and Bruggeman produce similar values
for the 20 vol% alumina [Fig. 7(b)]; OOF2 gave an underap-
proximation and Bruggeman an overapproximation, but both
models were within �2% error. As seen in Fig. 8, OOF2 simu-
lations resulted in thermal conductivity values closest to experi-
ments for both 8 mol% YSZ + 10 and 20 vol% mullite
composites with only �1.25% and �0.5% error, respectively.

Maxwell Garnett and Bruggeman calculations give higher
keff values than OOF2 for mullite composites. The power of

the OOF2 simulations is that real microstructures are used,
although this is also one of the challenges as SEM images must
be obtained, whereas the Maxwell Garnett and Bruggeman
models assume simpler distributions and simpler grain shapes.
A caveat with OOF2 is that one must ensure that the variabil-
ity in the real microstructure is accurately represented, hence
the use of multiple images from different sections of the mate-
rial. Also it must be remembered that OOF2 simulations are
fundamentally two dimensional, and this may underestimate
the true three-dimensional thermal conductivity [see Section
III (3)]. In this study, allowing for the uncertainty in model
inputs (estimated as �4%), the OOF2 and Bruggeman results
both fall within the uncertainty of the experimental results.

(3) 2D Approximations of a 3D Material
It is noteworthy that the OOF2 calculations are so close to
the experimental thermal conductivity in Figs. 7 and 8
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despite OOF2 being a two-dimensional approach. If the heat
flux vectors in a real three-dimensional (3D) system are dom-
inated by flow in a two-dimensional (2D) plane, then an
OOF2 analysis of the effective conductivity of this plane will
give a very accurate representation of the real 3D conductiv-
ity. In terms of Figs. 2, 5, and 6, this would require that all
the heat flows in the XY plane, with no local heat fluxes in
the Z direction. However, in these samples, the dispersed
particles are randomly distributed and approximately equi-
axed, and local heat fluxes will have a significantly 3D
nature.

To quantify potential errors for approximating a 3D micro-
structure with a 2D calculation, we can use the known 3D and
2D forms of the Bruggeman model.45 Recognizing that in the
alumina–YSZ composite k2/k1 > 10, it is a reasonable first
approximation and also conservative (worst-case) bound to set
k2/k1 ? ∞, leading to the simplified Bruggeman expressions:

3D :
keff;3D
k1

¼ 1

1� 3V2
; 2D :

keff;2D
k1

¼ 1

1� 2V2
(10)

The 2D expression is traditionally given in terms of an area
fraction (e.g., A2), which here we replace by the volume frac-
tion V2. This is appropriate because a physically equivalent
3D system can be obtained by extrusion of the same 2D (XY)
inclusion geometry uniformly along the third dimension (Z).

The error ratio between the two expressions is:

keff;3D
keff;2D

¼ 1� 2V2

1� 3V2
(11)

Although the specific form of Eq. (11) arose from Brugg-
eman, the qualitative conclusion that keff,3D > keff,2D for the
same volume fraction can also be reached by comparing 2D
and 3D bounding analyses following Elrod.46 A similar trend
is also expected from an argument that reducing the dimen-
sionality is equivalent to imposing additional constraints that
also reduce keff.

45 Thus, regardless of the theory used we
conclude that a 2D calculation based on a planar section of
a 3D microstructure will underestimate the true 3D conduc-
tivity. For the alumina–YSZ composites of the present work,
the 3D/2D errors such as estimated from Eq. (11) are likely
to be no more than a few tens of percent, with smaller errors
as the k2/k1 ratio becomes closer to unity (e.g., at higher
temperatures and for the mullite–YSZ composites).

(4) Sensitivity
Figure 10 shows the dimensionless sensitivity of keff to k2 for
each analytical model and OOF2 simulations. The sensitivity
parameter Sk2 is calculated for each temperature and the
average values with standard deviations are reported in
Fig. 10. The sensitivity of OOF2 is determined numerically,
by increasing the thermal conductivity of the dispersed phase
by 5% and calculating the percent increase in keff relative to
the 5% increase.

All four calculations of Fig. 10 exhibit the same trend that
Sk2 increases with volume fraction V2 (for fixed k2). This is
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expected because the smaller the V2, the less the influence k2
has on keff. Comparing the alumina and mullite results in
Fig. 10, the Maxwell Garnett model, Bruggeman model, and
OOF2 simulations also all show that Sk2 decreases with
increasing k2 (for fixed V2). In contrast, the linear Rule of
Mixtures model shows an opposite trend of Sk2 increasing
with k2, which we now show is nonphysical and thus high-
lights another shortcoming of the linear Rule of Mixtures
approximation.

The physical argument is as follows. As the particles are
dispersed and isolated, clearly keff must saturate to a finite
value even in the limit that k2 ? ∞. Therefore, for any fixed
V2, keff should be most sensitive to k2 when k2 and k1 are of
similar magnitudes, while (for a dispersed particle system)
Sk2 should fall off to zero for both k2 � k1 and k2 � k1. In
the present work, k2 is already larger than k1, thus explaining
why Fig. 10 should show smaller sensitivity to alumina (k2/
k1 � 16) than to mullite (k2/k1 � 3). On the other hand, the
linear Rule of Mixtures model from Eq. (1) is formally
equivalent to conductors in parallel, so in the limit k2 ? ∞ it
wrongly gives keff = V2k2 and Sk2 ! 1.

To illustrate the impacts of sensitivity on error propaga-
tion in the model calculations, we suppose that the uncer-
tainty in the model inputs k1 and k2 is around 5%. For the
20 vol% alumina sample, Fig. 9 shows that Sk2 for the three
preferred models is around 0.15. This means that a 5%
uncertainty in k2 contributes to only around 0.75% uncer-
tainty in keff. Similarly, using the sum rule stated above we
get Sk1 ¼ 0:85, showing that a 5% uncertainty in k1 contrib-
utes 4.25% uncertainty in keff. These two error sources are
assumed uncorrelated, so their contributions are added in
quadrature to obtain a total uncertainty in the calculated keff

of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:75%Þ2 þ ð4:25%Þ2

q
¼ 4:3%. This is clearly dominated

by the uncertainty in the k1 of the 8 mol% YSZ matrix.
The sensitivity calculations also quantify the potential for

further increasing keff by using inclusions of even higher k2.
For example, at V2 = 20 vol%, replacing alumina by another
material with 33% higher thermal conductivity [k2 � 43 W/
(m�K) rather than 33 (W/(m�K)] would only increase keff
further by around 5%. In the extreme limit k2 ? ∞, for
V2 = 20% the models show that keff/k8 mol% YSZ will be at
most 2.5 (Bruggeman) or 1.75 (Maxwell Garnett), which
shows there still may be some room for improvement com-
pared with the present results (keff, alumina/k8 mol% YSZ � 1.6).

(5) Porosity Effects
The effect of porosity on the effective thermal conductivity
of bulk ceramics has been considered in a number of previ-
ous works,15,39,42 but not considered in this study, as the
samples contained minimal porosity (approximately 1%–2%:
Table I). In the limit of small porosity, most standard
expressions take the form keff = kFully Dense 9 (1�c/), where
/ is the porosity and c is a numerical factor. Kingery et al.39

used c = 1, Klemens47 obtained c = 4/3, and the Maxwell
Garnett [Eq. (3)] and Bruggeman [Eq. (4)] expressions above
correspond to c = 3/2. Therefore, the present samples with /
2% are expected to have a porosity effect on the thermal
conductivity of no more than 3%, which will not signifi-
cantly impact the results.

IV. Conclusions

Thermal conductivity measurements over a temperature
range 310 K (37°C)–475 K (202°C) using the 3x method
show how second phase additions of ceramics with a higher
thermal conductivity increase the thermal conductivity of
8YSZ. An 80% increase in thermal conductivity is observed
for additions of 20 vol% alumina to 8YSZ in the measured
temperature range. Comparison of the Maxwell Garnett,
Bruggeman, and linear Rule of Mixtures models with 3x

measurements show the linear Rule of Mixtures is the most
divergent from experimentation when predicting thermal
conductivity of dilute two-phase composites. Error in the lin-
ear Rule of Mixtures model exceeded 100% in some cases,
whereas the other two models were within 8% (Maxwell
Garnett) and 2.5% (Bruggeman) of measurements. OOF2
simulations provided a good approximation (1.5%) to the
measured thermal conductivity. OOF2 has the advantage of
incorporating the real microstructure morphology, although
OOF2’s two-dimensional nature may cause it to underesti-
mate the real three-dimensional thermal conductivity. A
dimensionless sensitivity analysis quantified a second short-
coming of the linear Rule of Mixtures, namely that it is far
too sensitive to variations in the thermal conductivity of the
dispersed phase (k2). On the other hand, the sensitivity of the
three other calculations agree that the overall uncertainty in
keff is determined primarily by the uncertainty in the matrix
k1, especially for the alumina composites with k2 ≫ k1.
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